157 research outputs found

    Graph Isomorphism Parameterized by Elimination Distance to Bounded Degree

    Get PDF
    A commonly studied means of parameterizing graph problems is the deletion distance from triviality [11], which counts vertices that need to be deleted from a graph to place it in some class for which e cient algorithms are known. In the context of graph isomorphism, we de ne triviality to mean a graph with maximum degree bounded by a constant, as such graph classes admit polynomial-time isomorphism tests. We generalise deletion distance to a measure we call elimination distance to triviality, based on elimination trees or tree-depth decompositions. We establish that graph canonisation, and thus graph isomorphism, is FPT when parameterized by elimination distance to bounded degree, extending results of Bouland et al.The work was supported in part by EPSRC grant EP/H026835, DAAD grant A/13/05456, and DFG project Logik, Struktur und das Graphenisomorphieproblem.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00453-015-0045-

    Reflooding and repopulation of the Mediterranean Sea after the Messinian Salinity Crisis: Benthic foraminifera assemblages and stable isotopes of Spanish basins

    Get PDF
    Benthic foraminiferal, sedimentological, and stable isotope analyses performed on early Zanclean sediments from Alboran Basin ODP Site 976 and southern Spanish land-based sections in the Malaga, Nijar and Sorbas basins have enabled the reconstruction of Mediterranean environmental conditions immediately after the Messinian Salinity Crisis. The presence at the Miocene – Pliocene boundary of dark layers, often enriched in organic matter, suggests that the Zanclean reflooding has created water column stratification, and reduced bottom-water oxygen levels. Considering that such dark layers are recorded at both deep and marginal settings far away from the Gibraltar gateway/s, a Mediterranean-scale water-mass stratification must have occurred. This stratification could be the result of saline Atlantic waters sinking into a less saline Mediterranean Basin still under the influence of the Paratethys. Our early Zanclean benthic δ18O data show that the Mediterranean water budget was indeed less negative than at present, explaining the lower salinity of the basin. However, the Atlantic values of the benthic δ13C registered in the Alboran basin suggest that bottom-water renewal rates were quite high during the early Zanclean, preventing the reduction of δ13C at the seafloor as observed in the Messinian records. Zanclean benthic foraminiferal repopulation sequences show similarities with recovery from low-oxic episodes during sapropel deposition. These observations, paired with the gradual deepening of the basins, suggests that the Zanclean reflooding led to a progressive shift from stressed and unstable environments towards benthic associations typical of efficient circulation and bottom water ventilation

    Phenotypic heterogeneity in IGHV-mutated CLL patients has prognostic impact and identifies a subset with increased sensitivity to BTK and PI3Kδ inhibition

    Get PDF
    The majority of chronic lymphocytic leukemia (CLL) patients are diagnosed with early-stage disease but the currently used prognostic tools appear to be less informative in this group of patients.1 This is especially problematic for patients with mutated immunoglobulin genes (M-CLL) as they have a more diverse clinical course when compared with patients with unmutated immunoglobulin genes (U-CLL).1, 2, 3, 4 Given the emergence of promising targeted, less toxic, therapeutics in CLL,5, 6 there is an increased need to identify patients who might benefit from early treatment with these new agents

    Fixed-Parameter Tractable Distances to Sparse Graph Classes

    Get PDF
    We show that for various classes C\mathcal{C} of sparse graphs, and several measures of distance to such classes (such as edit distance and elimination distance), the problem of determining the distance of a given graph G\small{G} to C\mathcal{C} is fixed-parameter tractable. The results are based on two general techniques. The first of these, building on recent work of Grohe et al. establishes that any class of graphs that is slicewise nowhere dense and slicewise first-order definable is FPT. The second shows that determining the elimination distance of a graph G\small{G} to a minor-closed class C\mathcal{C} is FPT. We demonstrate that several prior results (of Golovach, Moser and Thilikos and Mathieson) on the fixed-parameter tractability of distance measures are special cases of our first method

    A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg

    Full text link
    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2 deg < l < 85 deg) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (diameter <= 0.8 deg). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication for emission from these potential sources. The upper limit for the SNR population is at the level of 6.7% of the Crab flux and for the pulsar ensemble at the level of 3.6% of the Crab flux.Comment: 10 pages, 5 figures, 4 tables, accepted for publication in A&

    The Trigger System of the H.E.S.S. Telescope Array

    Full text link
    H.E.S.S. -- The High Energy Stereoscopic System-- is a new system of large atmospheric Cherenkov telescopes for GeV/TeV Gamma-ray astronomy. This paper describes the trigger system of H.E.S.S. with emphasis on the multi-telescope array level trigger. The system trigger requires the simultaneous detection of air-showers by several telescopes at the hardware level. This requirement allows a suppression of background events which in turn leads to a lower system energy threshold for the detection of Gamma-rays. The implementation of the H.E.S.S. trigger system is presented along with data taken to characterise its performance.Comment: 20 pages, 12 figures, Accepted for publication in Astroparticle Physic

    Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis

    Get PDF
    The late Miocene evolution of the Mediterranean Basin is characterized by major changes in connectivity, climate and tectonic activity resulting in unprecedented environmental and ecological disruptions. During the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma) this culminated in most scenarios first in the precipitation of gypsum around the Mediterranean margins (Stage 1, 5.97-5.60 Ma) and subsequently &gt; 2 km of halite on the basin floor, which formed the so-called Mediterranean Salt Giant (Stage 2, 5.60-5.55 Ma). The final MSC Stage 3, however, was characterized by a "low-salinity crisis", when a second calcium-sulfate unit (Upper Gypsum; substage 3.1, 5.55-5.42 Ma) showing (bio)geochemical evidence of substantial brine dilution and brackish biota-bearing terrigenous sediments (substage 3.2 or Lago-Mare phase, 5.42-5.33 Ma) deposited in a Mediterranean that received relatively large amounts of riverine and Paratethys-derived low-salinity waters. The transition from hypersaline evaporitic (halite) to brackish facies implies a major change in the Mediterranean’s hydrological regime. However, even after nearly 50 years of research, causes and modalities are poorly understood and the original scientific debate between a largely isolated and (partly) desiccated Mediterranean or a fully connected and filled basin is still vibrant. Here we present a comprehensive overview that brings together (chrono)stratigraphic, sedimentological, paleontological, geochemical and seismic data from all over the Mediterranean. We summarize the paleoenvironmental, paleohydrological and paleoconnectivity scenarios that arose from this cross-disciplinary dataset and we discuss arguments in favour of and against each scenario

    Impairment of germline transmission after blastocyst injection with murine embryonic stem cells cultured with mouse hepatitis virus and mouse minute virus

    Get PDF
    The aim of this study was to determine the susceptibility of murine embryonic stem (mESCs) to mouse hepatitis virus (MHV-A59) and mouse minute virus (MMVp) and the effect of these viruses on germline transmission (GLT) and the serological status of recipients and pups. When recipients received 10 blastocysts, each injected with 100 TCID50 MHV-A59, three out of five recipients and four out of 14 pups from three litters became seropositive. When blastocysts were injected with 10−5 TCID50 MMVp, all four recipients and 14 pups from four litters remained seronegative. The mESCs replicated MHV-A59 but not MMVp, MHV-A59 being cytolytic for mESCs. Exposure of mESCs to the viruses over four to five passages but not for 6 h affected GLT. Recipients were seropositive for MHV-A59 but not for MMVp when mESCs were cultured with the virus over four or five passages. The data show that GLT is affected by virus-contaminated mESCs

    Orbital forcing and evolution of the Southern African Monsoon from late Miocene to early Pliocene

    Get PDF
    The late Miocene-early Pliocene (7.4-4.5 Ma) is a key interval in Earth's history where intense reorganization of atmospheric and ocean circulation occurred within a global cooling scenario. The Southern African monsoon (SAFM) potentially played an important role in climate systems variability during this interval. However, the dynamics of this important atmospheric system is poorly understood due to the scarcity of continuous records. Here, we present an exceptional continuous late Miocene to early Pliocene reconstruction of SAFM based on elemental geochemistry (Ca/Ti and Si/K ratios), stable isotope geochemistry (δ18O and δ13C recorded in the planktonic foraminifera Orbulina universa), and marine sediment grain size data from the International Ocean Discovery Program (IODP) Site U1476 located at the entrance of the Mozambique Channel. Spectral characteristics of the Si/K ratio (fluvial input) was used to identify the main orbital forcing controlling SAFM. Precession cycles governed precipitation from 7.4 to ∼6.9 Ma and during the early Pliocene. From ∼6.9 to ∼5.9 Ma, the precession and long eccentricity cycles drove the SAFM. The major Antarctic ice sheet expansion across this interval appear to influence the isotopic records of O. universa imprinting its long-term variability signal as a response to the ocean and atmospheric reorganization. Precession cycles markedly weakened from 5.9 to 5.3 Ma, almost the same period when the Mediterranean Outflow Water ceased. These findings highlight important teleconnections among the SAFM, Mediterranean Sea, and other tropical regions
    corecore